Journal of Organometallic Chemistry, 76 (1974) 349–353 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SOME COORDINATION COMPOUNDS OF PHENYLZIRCONIUM TRICHLORIDE

JOHN F. CLARKE, GERALD W.A. FOWLES and DAVID A. RICE The Department of Chemistry, The University of Reading, Reading RG6 2AD (Great Britain) (Received March 12th, 1974)

Summary

Phenylzirconium trichloride has been isolated as its tetrahydrofuran adduct $PhZrCl_3 \cdot 3thf$ (I). The reaction of I with a range of nitrogen, phophorus and sulphur ligands gave products of stoichiometry $PhZrCl_3 \cdot thf \cdot L$ (L = 2,2'-bipyridyl, 4,4'-bipyridyl, 2-methylpyridine or triphenylphosphine) and $PhZrCl_3 \cdot thf \cdot 2L'$ (L' = pyridine, PhCN or 1,4-thioxan). Reaction of I with methyl cyanide gave $PhZrCl_3 \cdot 2CH_3CN$, which reacted with bidentate donors to give complexes of formula $PhZrCl_3 \cdot L$ (L = 2,2'-bipy, 4,4'-bipy or $Ph_2PCH_2CH_2PPh_2$). The adducts were characterised by analysis, NMR and infrared spectroscopy.

Introduction

A range of adducts of RTiCl₃ are known, the most widely studied being MeTiCl₃ [1--3], but in contrast there are few reports of analogous zirconium species. RZrCl₃ (R = CH₃, C₂H₅ and C₃H₇) have been reported to be formed in toluene at 0° and R₂ZrX₂·2,2'-bipy has been isolated [4]. Our attempts to synthesise CH₃ZrCl₃ were unsuccessful but we were able to prepare PhZrCl₃ as its tris-tetrahydrofuran adduct. The only related reports of phenylzirconium species discuss the preparation of Ph₄Zr (which was not isolated because of its thermal instability) and the etherate of Ph₂Zr [5].

Results and discussion

 $PhZrCl_{3}$ · 3thf (I) is formed when equimolar amounts of zirconium tetrachloride and phenylmagnesium chloride are reacted in toluene at 0°. The yellowbrown solid I is extremely sensitive to air and moisture so that carbon and hydrogen analyses were precluded. However, the compound showed no measureable decomposition when stored under nitrogen at room temperature over a period of several hours. This thermal stability is in contrast to that reported

Ligand; adduct	Analysis found	l (¢alcd.) (%)			Colour	Reaction time	Intrared bands thf(cm ⁻¹)	of coörginated	p(Zr-C)
	Zr	G	z			9	vatym (COC) ^a	Psyrh (COC) ^a	
Tetrahydrofuran PhZrCl3. 3thf	18.5 (18.4)	21.6 (21.4)			Yellow-hrown	4	1025	860	475
2, 2'-Bipyridyl PhZrCl3, thf• 2,2'-bipy PhZrCl3•2,2'-biov	18.0 (18.0) 21.8 (21.2)	21.4 (21.0) 24.5 (24.6)	6.7	(5.6) (6.5)	Y ellow Yellow	~ ~	ą	886	471 469
4,4'-Bipyridyl PhZrCl3, thf' 4,4'-pipy PhZrCl3,4,4'-bipy	18.0 (18.0) 20.5 (21.2)	21.2 (21.0) 23.6 (24.6)	6.3	(5.6) (6.5)	White Yellow	લ લ	otor	840	00
Pyridine PhZrCl3 thf 2py	18.0 (18.0)	20.7 (20,9)	6.3	(6.6)	Yellow	8	10()9	870	U
2-Methylpyridine PhZrCl3-thf·(2-mpy)	20.5 (20.6)	¢3.9 (24,0)	2,8	(3.2)	Yellow	5	1020	865	470
Triphenylphosphine PhZrCl3.thf.tpp	14.0 (14.9)	17.7 (17,4)			Yellow	8	1020	860	o
PhCN PhZrCl ₃ thf 2PhQN	17.0 (16.4)	(1,01) (19,1)	6,1	([2,1])	Brown	5	102,5	878	o
Thioxan PhZrCl3 thf 2thiox	15.6 (16.4)	19.3 (19.1)			Orange	હ્ય	1002	844	5
MeCN PhZrCl ₃ · 2CH ₃ CN	27.2 (25.6)	31.0 (29.8)	8.5	(6.7)	Grey	48			460d
Ph2PCH2CH2CH2Ph2 PhZrCl3·dpe	13.3 (13.5)	16.0 (15.8)			Yellow	. 03			474

350

TABLE 1

TABLE 2

NMR SPECTRA IN CH₂Cl₂^a

Compound	Zr-Ph	Ligand resonances (assignments in brackets) ^b
Tetradyarojuran PdZrCT3. štal ZrCl4. 2tbl	2.64 [°]	ð.9T (a-protonsj, 8.T4 (f-protonsj H.93 (æprotons), 7.97 (f-protons)
2, Ź-Bipyridyi PhZrCl ₃ ·thf·2,2-bipy	ಬೆ	6.20 (α-protons), 8.30 (β-protons)
Pyridine PhZzCl3• thf• 299	2.64	6.00 (a-protozs), 8.04 (&-protozs)
2-Methylpyridine Ph2rCl ₃ ·thf·(2-mpy)	2.67	5.95 (α-protons), 8.04 (β-protons), 7.27 (CH ₃)
Triphenylphosphine PharCiz^ihi^ipp	đ	5,96 (s-protons), 3.82 (3-protons)
Phenyl cyanide PhZrCl ₃ ·thf·2PhCN	2.70 ^d	6.10 (α-protons), 8.10 (β-protons)
Thioxan PhZrCl3`thi`2thiox	2.69	6.00 (α-protons), 8.15 (β-protons), 6.10 (CH ₂ O), 7.20 (CH ₂ S)
1, 2-Bis(diphenylphosphino)ethane PhZrCl ₃ · dppe	2.65 ^d	6.75 ^{<i>e</i>} (CH ₂ P)

^aCH₂Cl₂ used as an internal standard (τ 4.67), see ref. 10. ^b α - β protons refer to the resonances. ^cPhenyl resonance appeared as a broad singlet. C₆H₆ in CH₂Cl₂ resonance at (τ 2.57). ^d Aromatic protons of phenyl bonded to zirconium indistinguishable from ligand resonances. ^eSignal observed as a complex multiplet.

for tetraphenylzirconium [5] and adducts of methyltitanium trichloride [2]. From its formulation the most likely stereochemistries for I are a sevencoordinate complex (of which there are a number of examples known for zirconium(IV) [6]), or six-coordinate species with either an uncoordinated molecule of tetrahydrofuran, or an ionic species with Cl⁻ in the lattice. Unfortunately throughout this study we were unable to obtain molecular weight or conductivity measurements because I and the other products are not soluble in suitable solvents. The infrared spectrum of I indicates that all three molecules of tetrahydrofuran are coordinated (Table 1). Thus ν_{asym} (COC) is found at 1025 cm^{-1} and ν_{sym} (COC) at 860 cm⁻¹ (free ligand bands at 1069 and 911 cm⁻¹). The NMR spectrum also indicates that coordination has taken place (Table 2). The α methylene resonances have shiften by τ 0.50 and β methylene resonances of τ 0.20 and indeed the positions of the resonances exhibited by I are comparable with those of $ZrCl_4 \cdot 2thf$ (Table 2).

I is soluble in tetrahydrofuran and by its reaction with a range of ligands compounds of formula PhZrCl₃ thf \cdot L (L = 2,2'-bipyridyl, 4,4'-bipyridyl, 2-methylpyridine or triphenylphosphine) and PhZrCl₃ thf \cdot 2L' (L' = pyridine, PhCN, or 1,4-thioxan) were obtained. (See Table 1 for analytical data.) As with I it is difficult to assign stereochemistries to these species. In all cases the ligand infrared spectra show L and L' to be coordinated. For example in the pyridine type bases the infrared bands that are ca. 1580 cm⁻¹ in the free ligands move to higher frequency. 1,4-Thioxan is capable of a number of modes of coordination. These are, as a bidentate donor through both the oxygen and sulphur atoms, or singly through either of the two donor atoms. The infrared spectrum of PhZrCl₃ thf \cdot 2thiox shows the COC modes to be in the position observed in the free ligand thus indicating that the oxygen atom is not coordinated, while the CSC modes are too weak to establish whether any significant shift in frequency has taken place. The NMR spectrum (Table 2), although complicated by the close proximity of the α methylene resonances of tetrahydrofuran and the resonance of the methylene groups adjacent to oxygen in 1,4-thioxan, clearly indicates that coordination through sulphur has taken place. Thus the resonance of the methylene group adjacent to oxygen has shifted by τ 0.10 while that of the group adjacent to sulphur is altered by τ 0.30.

The single molecule of tetrahydrofuran that appears in PhZrCl₃·thf·L and PhZrCl₃·thf·2L' is coordinated, since the infrared spectra show changes in the COC modes (Table 1) while the NMR spectra exhibit changes in the α and β methylene resonances (Table 2). With these species we were again unable to make molecular weight measurements.

In order to synthesise from I adducts containing no tetrahydrofuran it was allowed to react in non-donor solvents with a range of donor ligands. All these attempts failed, the products being either non-stoichiometric or the same as those formed by reaction in tetrahydrofuran. However, prolonged reaction of I in neat methyl cyanide afforded a grey coloured solid, PhZrCl₃· 2CH₃CN. This methyl cyanide adduct is insoluble in methyl cyanide and dichloromethane accordingly we were unable to obtain a NMR spectrum. The infrared spectrum shows the expected increase in ν (CN) (ca. 25 cm⁻¹). From PhZrCl₃·2CH₃CN attempts were made to prepare other compounds by ligand replacement reactions. The only successful experiments involved strong bidentate donors which gave $PhZrCl_3 \cdot L$ (L = 2,2'-bipyridyl, 4,4'-bipyridyl and $Ph_2PCH_2CH_2PPh_2$). The 2,2'-bipyridyl adduct unlike PhZrCl₃ \cdot thf \cdot 2,2'-bipy is completely insoluble in dichloromethane thus precluding NMR measurements. The infrared spectra of al three $PhZrCl_3 \cdot L$ are as expected and indicate coordination has taken place. The species $PhZrCl_3 \cdot thf \cdot L$ (L = 2,2'-bipy or 4,4'-bipy) can be obtained by dissolving $PhZrCl_3 \cdot L$ (L = 2,2'-bipy or 4,4'-bipy) in tetrahydrofuran.

Table 2 records the position of the phenyl—zirconium NMR resonance. The NMR resonance occurred as a rather broad singlet in contrast to the multiplet reported for $(\pi$ -C₅H₅)₂ZrPh₂ [7]. The suggestion that decomposition to benzene is taking place can be discounted as the benzene resonance occurs at τ 2.57 in dichloromethane. (See Table 2.)

The infrared spectra of all the complexes in the region $6000-250 \text{ cm}^{-1}$ contain a broad band at 300 cm^{-1} assignable to the zirconium—chlorine stretching modes. In the region ca. 475 cm^{-1} there occurs an absorption (Table 1) which we tentatively assign to a zirconium—carbon stretching mode. This band is obscured by ligand bands in some spectra but the position agrees with that assigned to ZrR_4 (R = CH₂C(CH₃)₃ or CH₂—Si(CH₃)₃) and ZrBz₄ [8.9].

This study of the coordination compounds of PhZrCl₃ has shown that they are kinetically more inert than the species formed by CH₃TiCl₃ [1,2] or RZrCl₃ (R = CH₃, C₂H₅ or C₃H₇) [4]. Presumably this decrease in reactivity is caused by the bulk of the phenyl group slowing down any bimolecular decomposition route and the lack of an easy pathway for β elimination. This is perhaps amplified by the failure of our attempts to insert SO₂, PhNCS, MeNCS into the phenyl—zirconium bond.

Experimental

General

All operations were carried out on an all-glass vacuum line. Samples for the measurement of spectra were prepared in a dry-box. NMR spectra were obtained on a Varian T60 and infrared spectra with a Perkin—Elmer 457. Analyses were carried out using conventional classical methods.

Preparations

(i) $PhZrCl_3 \cdot 3thf(I)$

Equimolar quantities (0.05 mol) of zirconium(IV) chloride and phenylmagnesium chloride (prepared in thf) were allowed to react in toluene (100 ml)at 0°. After four hours the resulting brown solution was filtered free from magnesium halides and any unreacted zirconium(IV) halide. The solvent was removed at the pump to give a yellow-brown solid which was stored at -80° under nitrogen.

(ii) $PhZrCl_3 \cdot thf \cdot 2,2'$ -bipy, $PhZrCl_3 \cdot thf \cdot 4,4'$ -bipy, and $PhZrCl_3 \cdot thf \cdot 2py$

Excess of the ligands (0.03 mol) were allowed to react with 0.01 mol of I in 30 ml of thf at room temperature. The solid products were filtered off and thoroughly washed with fresh thf. The products were pumped for 2-3 h.

(iii) $PhZrCl_3 \cdot thf \cdot (2mpy)$, $PhZrCl_3 \cdot thf \cdot tpp$, $PhZrCl_3 \cdot thf \cdot 2PhCN$, $PhZrCl_3 \cdot thf \cdot 2thioxan$

Stoichiometric amounts of ligand and I (0.01 mol) were allowed to react at room temperature for 3 h. The resulting solids were isolated by filtration, washed with n-pentane and pumped to dryness. PhZrCl₃·thf·2thioxan was prepared similarly to the above using a 1/2 molar ratio of I to ligand with benzene as the solvent.

(iv) PhZrCl₃· 2CH₃CN, PhZrCl₃· 2,2'-bipy, PhZrCl₃· 4,4'-bipy and PhZrCl₃· dppe Compound I was dissolved in neat methyl cyanide and stirred for two

days at 0°. A grey solid that analyses showed to be PhZrCl₃·2CH₃CN was isolated by filtration. Stoichiometric amounts of L (L = 2,2'-bipy, 4,4'-bipy or Ph₂PCH₂CH₂PPh₂) and PhZrCl₃·2CH₃CN were allowed to react in benzene at ambient temperature for 2 h. The products PhZrCl₃·L (L = 2,2'-bipy, 4,4'-bipy or Ph₂PCH₂CH₂PPh₂) precipitated from solution and were isolated by filtration.

References

- 1 R.J.H. Clark and A.J. McAlees, J. Chem. Soc. A, (1970) 2026.
- 2 G.W.A. Fowles, D.A. Rice and J.D. Wilkins, J. Chem. Soc. A, (1971) 1920.
- 3 R.J.H. Clark and M. Coles, Chem. Commun., (1971) 1587.
- 4 K.H. Thiele and J. Kruger, Z. Anorg. Allg. Chem., 383 (1971) 272.
- 5 G.A. Razuvaev, V.N. Latyaeva, L.I. Vishinskaya and A.M. Rabinovitch, J. Organometal. Chem., 49 (1973) 441.
- 6 R.B. Van Dreele, J.J. Stetzowski and R.C. Fay, J. Amer. Chem. Soc., 93 (1971) 2887.
- 7 E. Samuel and M.D. Rausch, J. Amer. Chem. Soc., 95 (1973) 6263.
- 8 W. Mowat and G. Wilkinson, J. Organometal. Chem., 38 (1972) C35.
- 9 P.J. Davidson, M.F. Lappert and P. Pearce, J. Organometal. Chem., 57 (1973) 269.
- 10 J.W. Emsley, J. Feeney and R.H. Sutcliffe, High Resolution NMR Spectroscopy, Pergamon Press, Oxford, 1965, Vol. 2.